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Abstract Image quality assessment (IQA) has been inten-
sively studied, especially for the full-reference (FR) scenario.
However, only the mean-squared error (MSE) is widely
employed in compression. Why other IQA metrics work
ineffectively? We first sum up three main limitations includ-
ing the computational time, portability, and working manner.
To address these problems, we then in this paper propose a
new content-weighted MSE (CW-MSE) method to assess the
quality of compressed images. The design principle of our
model is to use adaptive Gaussian convolution to estimate the
influence of image content in a block-based manner, thereby
to approximate the human visual perception to image qual-
ity. Results of experiments on six popular subjective image
quality databases (including LIVE, TID2008, CSIQ, IVC,
Toyama and TID2013) confirm the superiority of our CW-
MSE over state-of-the-art FR IQA approaches.
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1 Introduction

A large quantity of image quality assessment (IQA) met-
rics, in terms of various schemes such as subjective testing,
perceptual model, saliency detection, machine learning and
brain science, have been proposed during the last decade.
IQA tasks are mainly divided into subjective assessment and
objective assessment. The first directly measures the percep-
tion of the human visual system (HVS) to image quality and
records the ratings as the overall quality scores, i.e. the mean
opinion score (MOS). Subjective quality scores are quite
valuable, because on the one hand they can be used to justify
the performance of objective IQA algorithms (e.g., LIVE [1],
TID2008 [2], CSIQ [3], IVC [4], Toyama [5] and TID2013
[6]), and on the other hand, they are able to instruct denoising
[7], restoration [8], coding [9—11], and compare tone-mapped
operators [12—14]. But subjective methods easily suffer the
drawbacks of being laborious, costly and time-consuming,
and thus cannot be adapted to real-time applications. As a
result, recent years have witnessed a surge of objective IQA
models in the literature.

Despite the emergence of hundreds of objective metrics,
most of them lie in full-reference (FR) IQA approaches. The
famous one is the traditional mean-squared error (MSE),
which has prevailed for decades owing to its simplicity and
clear physical meaning. Nonetheless, MSE was found to
poorly correlate with human judgements of image quality
[15]. The epoch-making structural similarity index (SSIM)
[16] was developed in light of luminance, contrast and struc-
tural similarities between the original and distorted image
signals, and its variants [17-22] have been designed to pursue
higher accuracy since then. Other advanced FR IQA methods
[23-29] were explored via the natural scene statistics (NSS)
[30], low-level vision [31], and free energy principle [32].
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Researchers have reached a common agreement that IQA
can assist the development and optimization of a wide variety
of image processing systems, such as compression, commu-
nication, denoising, enhancement, restoration and display.
Only MSE and SSIM, however, have been adopted, espe-
cially in the field of compression, whereas an enormous
number of recently designed FR IQA methods are cast aside.
So we first summarize several crucial reasons of the above-
mentioned phenomenon and then develop a new effective
content-weighted MSE (CW-MSE) method.

In general, a low-pass filter can well approximate the con-
trast sensitivity function (CSF) of the HVS, which perceives
a small patch of an image by taking into account the content
correlation of itself and the neighbors. A similar basic idea
has been recently used in entropy of primitives (EOP) [33]
as well, but this method works too slow and not effectively.
It is natural that the low-pass filter cannot be globally uni-
fied but works in a block-based way owing to the complexity
of the HVS. So our CW-MSE first estimates the adaptive
Gaussian kernel based on the correlation computed between
each block and its surrounding blocks using the local MSE
and then adopts the adaptive Gaussian kernel to convolve
each block before computing MSE of the original and dis-
torted images, in order to derive the overall quality score.

We arrange the rest of this paper as follows. Section 2
first analyzes “why most FR IQA methods work invalidly
in compression?” and then provides the proposed CW-MSE
in detail. A comparison of our CW-MSE with the FR IQA
algorithms stated above on six popular publicly-available
LIVE [1], TID2008 [2], CSIQ [3], IVC [3], Toyama [5]
and TID2013 [6] databases will be reported and discussed
in Sect. 3. We finally conclude this paper in Sect. 4.

2 Proposed quality metric

Despite quite a lot of FR IQA methods, most image/video
processing systems merely include MSE and SSIM, partic-
ularly in the important coding. Moreover, it was found that,
despite several uses of SSIM [9-11], in most cases MSE is
employed for optimization in coding. “Why the state-of-the-
art FR IQA models cannot be applied to compression?” The
following three points may answer this question.

e First, real-time systems are highly in demand in coding.
But most FR metrics operate with massive time, far less
than the ideal technologies.

e Second, most existing systems are not well compatible
with complicated models, which those above FR IQA
methods are based on. That is those FR approaches have
weak portability, so they are hard to be embedded into
most existing applications.
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e Third, coding works in the block-based manner. But
above FR metrics require the entire image, letting them
not available in block-matching.

Note that neither MSE or SSIM has desirable performance
in assessing JPEG/JPEG2000 (JP2K) compressed images,
as given in Sect. 3. Also, content-based methods have been
validly incorporated into compression [34]. So in this arti-
cle we design the effective, efficient and portable CW-MSE
metric.

The most serious disadvantage of MSE should be that it
fails to account for the impact of image content. The recently
developed information content weighting (IW) strategy aims
to solve this problem and successfully improves MSE to
derive higher-performance IW-MSE. The IW scheme, how-
ever, is motivated by the complicated MS and NSS models
and thus has substantially computational cost. Also, IW needs
the whole compressed image, making it must work many
times when block-matching in image coding.

In this paper, the content-weighted (CW) model is pro-
posed to characterize the image content in an alternative way
and is realized in two steps. Specifically, when perceiving
each small patch, the HVS jointly takes into consideration the
content of each patch itself and the correlation with its sur-
rounding patches. Although the CSF function has provided a
curve of the HVS’s response to varying spatial frequency, it
only works for simple patterns, ignoring the effect of image
content such as texture masking. Furthermore, because of the
extreme complexity of the HVS, we believe the approximate
low-pass filter is not unified globally but block based.! In
reality, the CSF curve suggests that the HVS will make a
deeper depression on high-frequency information than that
on low-frequency one. In other words, the more unlikely the
current block and its neighbors are, the deeper depression
we will make on. Therefore, the first step of CW-MSE is to
design the adaptive Gaussian convolution (a common low-
pass filter) for each block based on the content correlation of
itself and its connections.

To specity, for a particular block By ; of size M x M in an
image I, the correlation coefficient ¢ (s, t) is computed by

K
¢ (s, 1) = D A(k) - b(k) ()

k=1

where M is set as 8 due to the fact that the processed blocks
are usually of size 8 x 8, K is also set as 8 since we only
consider its 8-connected blocks of the current one, and A (k)
are predefined eight constants. The similarity degree b (k) of
By ; and its eight neighboring blocks is defined by

! This statement will be explicitly analyzed in Sect. 3.
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Fig. 1 Illustration of the proposed content-weighted (CW) strategy
for a particular block By ; of size M x M. The correlation between the
current block By ; and its surrounding eight blocks are computed with
the local MSE

b(k = 1) = MSE(és,ty és—l,l)
bk =2) = MSE(BSJ, Bs,t+l)

I Byi. B 2
D bk =3) = MSEB, B @
b(k = 4) = MSE(By,,, By-1)
b(k = 5) = MSE(By,1, By—1,+1)
() bk =6) = MSE(BS,I’ Bs+1,t+1) (3)

bk =7) = MSE(By 1, By+1,-1)
b(k = 8) = MSE(By, By_1,1-1)

where k = {1, 2, 3, 4} in (I) indicate 4-connected top, right,
bottom and left blocks (colored light gray in Fig. 1), whereas
k = {5,6,7,8} in (II) represent 8-connected top-right,
bottom-right, bottom-left and top-left blocks (colored dark
gray in Fig. 1) except the 4-connected blocks in (I). The
MSE of two arbitrary blocks X and Y is defined as

SI YL X ()~ Y (PP

MSE(X, Y) = 70

“)

where X and Y are of the same size P x Q. The current block
Bg.; and its connected eight blocks are extracted from / that
is processed by

where weassignoy, as 1.5, 82, = {i—3,i—-2,i—1,i,i+1,i+
2,i4+3Yand 2; = {j—3,j-2,j—1,j,j+1,j+2, j+3}.

Next, the content-adaptive Gaussian kernel, which is sta-
ble for the overall 64 pixels in each block yet distinct among
various blocks, is defined for the current block B(s,t) as
follows:

)

_ /m2+n2
Vis,t;m,n) =exp| ———

202(s, 1)

where both m and n are limited into the range of {—3, —2, —1,
0, 1,2, 3} in this implementation, and we adopt a three-
parameters power-law function to estimate the variable
oy (s, 1):

ou(s,t) =a - p(s, 1) + B ®)

where «, B and y are fixed parameters that control the key
variable o, in the CW-MSE. ¢ (s, t) is computed by Eq. (1).
To illustrate the effectiveness, we first normalize the parame-
ter oy (s, t) to generate the CW maps of 29 source images in
the LIVE database [1]:

CW(s, 1) = oy(s, 1)/ max(oy) ©))
and then show the CW maps in Fig. 2 for straightforward

understanding. It is obvious that the CW maps succeed
in catching those blocks with important information (e.g.,

Fig. 2 The CW weighting maps of source images in LIVE [1]
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Table 1 Performance

evaluations of testing TQA LIVE TID2008 CSIQ Toyama IvC TID2013 Average

metrics on JPEG compressed SRC

images
MSE 0.8809 0.8717 0.8881 0.2868 0.7400 0.9189 0.7644
SSIM 0.9449 0.8989 0.9222 0.6263 0.8269 0.9200 0.8565
MS-SSIM 0.9794 0.9341 0.9626 0.8360 0.9261 0.9294 0.9279
IW-MSE 0.9670 0.9529 0.9655 0.7835 0.9354 0.9536 0.9263
IW-SSIM 0.9808 0.9207 0.9662 0.9204 0.9493 0.9198 0.9429
FSIM 0.9834 0.9370 0.9654 0.8991 0.9582 0.9382 0.9469
Q[25] 0.9630 0.8902 0.9319 0.8253 0.8530 0.8871 0.8918
GSIM 0.9778 0.9393 0.9632 0.9328 0.9586 0.9284 0.9500
IGM 0.9808 0.9472 0.9686 0.8260 0.9304 0.9487 0.9336
PAMSE 0.9567 0.9600 0.9526 0.6725 0.9023 0.9575 0.9002
CW-MSE 0.9758 0.9493 0.9672 0.9384 0.9523 0.9508 0.9556
PCC
MSE 0.8891 0.8702 0.8910 0.3268 0.7464 0.9163 0.7733
SSIM 0.9510 0.9254 0.9420 0.6543 0.8368 0.9544 0.8773
MS-SSIM 0.9820 0.9618 0.9824 0.8415 0.9392 0.9613 0.9447
IW-MSE 0.9763 0.9825 0.9813 0.7903 0.8272 0.9811 0.9231
IW-SSIM 0.9823 0.9595 0.9844 0.9168 0.9568 0.9572 0.9595
FSIM 0.9838 0.9743 0.9835 0.8922 0.9624 0.9713 0.9613
Q[25] 0.9619 0.9220 0.9584 0.8252 0.8357 0.9229 0.9044
GSIM 0.9840 0.9546 0.9833 0.9274 0.9605 0.9470 0.9595
IGM 0.9859 0.9795 0.9850 0.8280 0.9439 0.9773 0.9483
PAMSE 0.9605 0.9768 0.9679 0.6907 0.9152 0.9809 0.9153
CW-MSE 0.9852 0.9768 0.9857 0.9384 0.9567 0.9744 0.9695
The best two performed metrics have been highlighted by bold font for quick glance

located near to edges) by just using the original image and H/MW/M

MSE. CW-MSE = D" > Qmsk(s. ) (13)

The second step is to apply the kernel V (s, t; m, n) to

convolve the current block B(s, t):

B'(s, 1) =

D ms)e2, 2nineq, Vs, tim,n) - B(m,n)

s=1

=1

where H and W are the height and width of the image /.

2ty 2mines, V(s t;m, n)
(10
An important note is that for fast implementation, the kernel
V (s, t; m, n) is computed only once from the block B(s, )

in the original image /, and the corresponding block By (s, )
in the distorted image 1 is processed using the same kernel:

B Z(m-i—S)E.QS Z(n+t)e.(2, Vi(s,t;m,n)- Bg(m,n)
d(sv t) = .
D mts)e2, 2minen, V(s tim,n)

(1D

We then evaluate the local MSE value Qwsg between the
block B'(s, t) and B/ (s, 1):

Owmsg(s, 1) = MSE(B'(s, 1), By(s, 1)) 12)

followed by pooling those MSE values of whole blocks to
derive the overall quality score of the CW-MSE:

@ Springer

3 Experimental results

In this section, we will testify and compare the performance
of the CW-MSE with classical and state-of-the-art FR IQA
metrics: (1) Five classical FR MSE, SSIM [16], MS-SSIM
[17], IW-MSE [18], and IW-SSIM [18]; (2) Five state-of-
the-art FR FSIM [24], Q [25], GSIM [26], IGM [27], and
PAMSE [29].2

Six image databases are adopted here. (1) The LIVE
database [1], which contains five image data sets with five
commonly encountered distortion types, and totally 779 cor-
rupted images from 29 references. In this research, we select
344 images belonging to JPEG and JP2K data sets. (2) The
TID2008 database [2], which is a very large database includ-
ing 1700 images generated from 25 pristine ones with 17
distortion categories at four distortion levels. Here, we choose

2 Interested readers can be directed to [35] for more recent IQA studies.
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200 images corrupted by two distortion types, JPEG and
JP2K. (3) The CSIQ database [3], consisting of 866 images
by using six types of distortions at four to five distortion lev-
els to corrupt 30 original versions. In our study, 300 images
corresponding to JPEG and JP2K compressions are used for
testing. (4) The IVC database [4], which is consisted by 185
images generated from 10 sources. Two distortion types and
their associated 100 JPEG and JP2K compressed images are
applied. (5) The Toyama database [5], which involves 168
distorted images. The whole database is adopted in this work.
(6) The TID2013 database [6], extending the four distortion
levels in TID2008 to five, making the nowadays largest data-
base with a total number of 3000 images. Here we pick 250
JPEG and JP2K compressed images.

As suggested by the video quality experts group (VQEG)
[36], we first map the objective predictions of testing IQA
metrics to subjective scores using the nonlinear regression
with a five-parameter logistic function:

1 1
Q@)=Q(

S 14
2 1+exp(cz(q—c3)>)+c“q+05 (19

where g and Q(g) are the input and mapped scores, and

formance measures to evaluate and compare the proposed
CW-MSE with the IQA metrics tested in this study. First,
Spearman rank-order correlation coefficient (SRC), which
does not consider the relative distance between the data but
computes their monotonicity. SRC is defined by

N
6>, 87

SRC=1-—- == "1
N(NZ-1)

15)

where §; is the difference in the i-th image’s ranks in sub-
jective and objective quality evaluations, and N stands for
the number of images in the testing database. SRC is a
nonparametric rank-based correlation measure, independent
of any monotonic nonlinear mapping between subjective
and objective quality ratings. Second, Pearson linear cor-
relation coefficient (PCC), meaning the linear prediction
performance, is computed between subjective ratings and
objective scores after the nonlinear regression by Eq. (14).
PCC can be calculated by

SN (@ —a)- (b —b)

{c1, c2, c3, ¢4, c5} are required to be determined during the  PCC = (16)

curve fitting process. We then apply two frequently used per- \/ ZlN:l (a; —a)? - ZlNzl (b; — b)?

:jﬁieaéorl::gfoggzcgel 0A LIVE TID2008 CSIQ Toyama  IVC TID2013 Average

metrics on JP2K compressed SRC

images
MSE 0.8954 0.8123 0.9362 0.8605 0.8500 0.8840 0.8731
SSIM 0.9355 0.8875 0.9207 0.9148 0.8488 0.9468 0.9090
MS-SSIM 0.9654 0.9738 0.9707 0.9470 0.9319 0.9483 0.9562
IW-MSE 0.9617 0.9745 0.9777 0.9240 0.9378 0.9645 0.9567
IW-SSIM 0.9649 0.9738 0.9683 0.9549 0.9495 0.9506 0.9604
FSIM 0.9717 0.9773 0.9685 0.9566 0.9402 0.9577 0.9620
Q [25] 0.9353 0.9497 0.9314 0.8508 0.8823 0.9233 0.9121
GSIM 0.9700 0.9760 0.9648 0.9506 0.9360 0.9602 0.9596
IGM 0.9679 0.9844 0.9784 0.9306 0.9353 0.9684 0.9608
PAMSE 0.9397 0.9878 0.9702 0.9026 0.9266 0.9759 0.9490
CW-MSE 0.9658 0.9794 0.9785 0.9484 0.9449 0.9700 0.9645
PCC
MSE 0.8997 0.8675 0.9461 0.8577 0.8473 0.8936 0.8853
SSIM 0.9415 0.8841 0.9236 0.9211 0.8630 0.9651 09164
MS-SSIM 0.9711 0.9756 0.9802 0.9506 0.9341 0.9685 0.9634
IW-MSE 0.9647 0.9787 0.9835 0.9260 0.9388 0.8551 0.9411
IW-SSIM 0.9732 0.9761 0.9809 0.9592 0.9540 0.9671 0.9684
FSIM 0.9775 0.9801 0.9807 0.8871 0.9416 0.9732 0.9567
Q[25] 0.9309 0.9522 0.9492 0.8562 0.8745 0.9439 0.9178
GSIM 0.9757 0.9826 0.9730 0.9569 0.8255 0.9789 0.9488
IGM 0.9734 0.9871 0.9845 0.9360 0.9367 0.9816 0.9665
PAMSE 0.9446 0.9836 0.9775 0.9019 0.9211 0.9865 0.9525
CW-MSE 0.9715 0.9862 0.9868 0.9550 0.9458 0.9852 0.9718

The best two performed metrics have been highlighted by bold font for quick glance
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Fig. 3 Scatter plots of DMOS/MOS versus the CW-MSE on JPEG compressed image subsets. a LIVE, b TID2008, ¢ CSIQ, d IVC, e Toyama, f

TID2013

where a; is the subjective ratings of the i-th image, and a
is the average of the overall ;. b; is the converted objective
quality score of the i-th image after the nonlinear regression,
and b is the average of the overall b;.

Among the above two performance measures, a good
image quality metric is of a value close to 1 for SRC and
PCC. We separately list and compare the performance results
for JPEG and JP2K compressed images in Tables 1 and 2. It
is apparent that the proposed CW-MSE performs substan-
tially well, even superior to classical and state-of-the-art
approaches on average. We also draw the scatter plots of
MOS/DMOS versus the CW-MSE on six image quality data-
bases in Figs. 3 and 4, which further illustrates the impressive
linearity and monotonicity of the proposed model. Tables 3
and 4 also report the quantitative comparison of our CW-MSE
and the computing FR IQA techniques using a computer
with 3.40GHz CPU processor and 4.00GB memory. We can
clearly observe that the proposed model is of fairly high com-
putational speed, merely less than MSE and PAMSE.

In addition to high performance, it is worth emphasizing
two advantages of the proposed CW-MSE. First, the design of
our technique benefits from some principles. Image structure
has an extremely important influence on the visual quality
of human judgement, and it has been widely used in most
existing IQA models [16-28] and some related applications
[7-13]. In [29], the authors have pointed out that using a

@ Springer

proper Gaussian kernel to filter the input original and dis-
torted images can effectively extract image structure. Note
that this Gaussian kernel is globally unified. According to the
recently revealed free-energy-based brain theory [32], a so-
called internal generative model in the human brain assists
to infer predictions of the meaningful information of input
visual signals and avoid the residual uncertainty in a con-
structive manner. That is the brain will largely smooth the
image regions with a great amount of residual information.
Actually, the free-energy-based distortion metric (FEDM)
[37,38] was recently proposed using the piecewise autore-
gressive (AR) model. Though the locally adaptive AR model
can be used to predict visual quality well, but it works very
slowly. Consequently, the CW-MSE that uses locally adap-
tive Gaussian kernel to advance MSE based on the above two
points is designed with such a high-performance index.
Second, it is easy to use and spread the proposed CW-
MSE to existing systems. On the one hand, our metric works
in the block-based manner and only needs MSE (the sim-
plest quality assessment method) and the original image, and
thus has low computational load and is suitable for real-time
applications. Particularly, our CW-MSE only computes the
weighting map once in block-matching in compression, but
the IW and other models require both whole original and
compressed images and thus must perform many times, lead-
ing to massive computational cost. On the other hand, the
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Table 3 Average computational time on the entire 150 JPEG com- - e
pressed images in CSIQ Bs1t1 Bt | Bsagt
Bs,t Bs-1,t+1
Models MSE SSIM MS-SSIM  IW-MSE  IW-SSIM e
Time (ms) 5.2979 45.877 81.331 351.29 410.35 B BT . ¥ )
sit-1 S:t Use MSE to estimate the relation
Models FSIM GSIM IGM PAMSE  CW-MSE of a block and its neighbors
Time (ms) ~ 462.53  28.359 12491 5.5652 16.496 Fig. 5 Tllustration of the content-weighted (CW) strategy for a partic-

Table 4 Average computational time on the entire 150 JP2K com-
pressed images in CSIQ

Models MSE SSIM  MS-SSIM  IW-MSE  IW-SSIM
Time (ms) 4.7693 45522  81.808 350.95 412.67
Models FSIM GSIM IGM PAMSE  CW-MSE
Time (ms) 462.17 27.073 12402 5.5895 16.612

CW-MSE is very portable since MSE has been incorporated
into most existing image processing systems. In summary,
our CW-MSE has achieved very inspiring results, and mean-
while, can overcome those main limitations of other existing
FR IQA metrics.

Finally, we stress that the proposed CW-MSE uses the
same kernel V for both original and distorted images. But

ular block By, of size M x M. The correlation between the current
block By, and its surrounding four blocks are computed with the local
MSE

in some cases, e.g., high compression ratio, there exists a
significant distinction between the input lossless image and
the associated compressed one. Two different kernels V are
highly required if the computational time is not strongly lim-
ited. At this time we only use top, left, top-left and top-right
blocks, as shown in Fig. 5.

4 Conclusion

In this paper, we have first analyzed three main limitations of
most existing FR IQA metrics used in coding. We then pro-
posed a new content-weighted MSE (CW-MSE) to assess
the quality of JPEG and JPGE2000 compressed images. The
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CW-MSE works by using locally adaptive Gaussian convolu-
tion to approximate the process of the HVS before computing
the weighting map to improve MSE. Comparative studies of
our technique are conducted on six image databases (LIVE,
TID2008, CSIQ, IVC, Toyama and TID2013). Results of
experiments confirm the superiority of the CW-MSE over
state-of-the-art FR IQA approaches.
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